

# ALABEO GNS530



- 1. The On/Off button turns the unit on and off.
- 2. The top number in each radio box correspond to the active frequency, the bottom number correspond to the standby frequency.
- 3. The Com and Nav Active/Standby Frequency switch toggles the active frequency to standby andce versa.
- 4. Nav1 Ident readout is the 3 letter code of the Nav1 beacon tuned in the Nav1 frequency.
- 5. Nav1 Radial is the radial degrees from the Nav1 beacon.
- 6. Nav1 Distance is the distance from the Nav1 beacon.
- 7. The Com/Nav switch is used to toggle between the Com and Nav radios.
- 8. The CDI switch ( NAV/GPS switch) toggles between GPS and Nav1 navigation modes.
- 9. The CDI, at the bottom of the screen, shows course deviation information in either Nav 1 or GPS navigation modes. In the Nav 1 mode, the CDI works exactly like the standard CDI display found on most aircraft. The deflection distance of the CDI needle corresponds to 1 mile on each side of the desired track in the Nav 1 mode and **t** corresponds to a 5 miles distance on each side when tracking a waypoint in the GPS mode.



10. All other buttons and their functions are the same as in the FSX defaultGPS500 unit and are described in the help section of the simulator. Please refer to this section for information on the functions.

## GPS Waypoint Information Bar



Click on the red area of the above picture to make the GPS Waypoint I nformation Bar appear/disappear. It could be clicked anytime you want.

The digital display of GPS waypoint information shows values **b**ly for GPS waypoints. If no waypoint is set in the GPS, the readout will displaynothing.





#### COPYRIGHTS

All the material contained in this pack is exclusive copyright of Alabeo and no part of any of the models contained in this package, or any other files within, in part or in whole, may be copied, re-distributed, disassembled, re-packaged or in any way be exploited for any commercial purpose without the permit of Alabeo.

Modified textures could be uploaded to public's sites mentioning Alabeo as the author of the original textures.

We do not accept uploads of ANY original textures or any other part of the package.

Comment: contact@alabeo.com www.alabeo.com

Copyrights © Alabeo. All rights reserved

# **Emergency Procedures** ALABEO.

Vabeo Copyrights all rights reserve



#### **GENERAL INFORMATION**

This section provides checklists and amplified procedures for coping with various emergencies that may occur. Emergencies caused by aircraft or engine malfunction are extremely rare if proper pre-flight inspections and maintenance are practiced.

However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem.

#### **Airspeeds for Emergency Procedures**

| Engine failure after takeoff 60 [knot] (70 [m        | iph]) |
|------------------------------------------------------|-------|
| (flaps in T/O or retracted position)                 |       |
| Maneuvering speed at 1,320 [lb] 88 [knot] (101 [r    | nph]) |
| Maneuvering speed at 900 [lb] 70 [knot] (80 [m       | ph])  |
| (flaps retracted)                                    |       |
| Gliding speed 60 [knot] (70 [m]<br>(flaps retracted) | ph])  |
| Precautionary landing with engine power              | ph])  |



2

#### Engine failure during takeoff run

| 1. Throttle        |  |
|--------------------|--|
| 2. Ignition switch |  |
| 3. Brakes          |  |

- idle - switch OFF - apply ALABEO

#### Engine failure after takeoff

| 1. Push control stick forward |                                              |
|-------------------------------|----------------------------------------------|
| 2. Speed                      | - gliding at 60 [knot] (70 [mph])            |
| 3. Altitude                   | - below 150 [ft] : land in takeoff direction |
|                               | - over 150 [ft] : choose a landing area      |
| 4. Landing area               | - choose free area without obstacles         |
| 5. Wind                       | - find direction and velocity                |
| 6. Flaps                      | - extend as necessary                        |
| 7. Trim                       | - adjust                                     |
| 8. Safety harness             | - tighten                                    |
| 9. Fuel Selector              | - close                                      |
| 10. Ignition switch           | - switch OFF                                 |
| 11. Master switch             | - switch OFF before landing                  |
| 12. Land                      |                                              |

#### Loss of engine power in flight

1. Push control stick forward

| 2. Speed             | - gliding at 60 [knot] (70 [mph])                 |
|----------------------|---------------------------------------------------|
| 3. Altitude          | - in accordance with actual altitude search for a |
|                      | suitable place to safe land                       |
| 4. Landing area      | - choose free area without obstacles              |
| 5. Wind              | - find direction and velocity                     |
| 6. Emergency landing | - perform                                         |



NOT INTENTED FOR REAL FLIGHTS.

3

#### In-flight engine starting

- 1. Switches
- 2. Master switch
- 3. Fuel Selector
- 4. Throttle idle
- 5. Fuel pump
- 6. Ignition switch
- 7. After engine starting
- other switches

- switch OFF unnecessary electrical equipment

ALARFO

- switch ON
- turn on (to tank with more quantity of fuel)

- giving location and intentions - if possible

- switch ON
- hold activated to start the engine
- fuel pump switch OFF
- switch ON as necessary

#### **Emergency landing without engine power**

Emergency landings are generally carried out in the case of engine failure and the engine cannot be re-started.

1. Speed

adjust for optimum gliding60 [knot] (70 [mph])

- extend as necessary

- 2. Trim
- 3. COMM
- 4. Flaps
  - 5. Fuel Selector
  - 6. Ignition switch
  - 7. Master switch
- switch OFF
   tighten

- adjust

- close

- 8. Safety harness
- 9. Perform approach without steep turns and land on chosen landing area.

- switch OFF

#### Precautionary landing with engine power

A precautionary landing is generally carried out in the cases where the pilot may be disorientated, the aircraft has no fuel reserve or possibly in bad weather conditions.

- 1. Choose landing area, determine wind direction
- Report your intention to land and landing area location if a COMM is installed in the airplane.

- Perform low-altitude passage into wind over the right-hand side of the chosen area with flaps extended as needed and thoroughly inspect the landing area.
- 4. Perform circle pattern.
- Perform approach at increased idling with flaps fully extended at 60 [knot] (70 [mph])
- Reduce power to idle when flying over the runway threshold and touch-down at the very beginning of the chosen area.
- 7. After stopping the airplane switch OFF all switches, shut OFF the fuel selector, lock the airplane and seek assistance.

#### NOTE

Watch the chosen area steadily during precautionary landing.

#### Engine fire during start

- 1. Fuel Selector
- 2. Throttle
- 3. Ignition switch
- 4. Master
- 5. Leave the airplane
- Extinguish fire by fire extinguisher or call for a fire-brigade if you cannot do it.

#### Engine fire in flight

- 1. Heating
- 2. Fuel Selector
- 3. Throttle
- 4. Ignition switch
- 5. Master switch
- 6. Emergency landing
- 7. Leave the airplane
- 8. Extinguish fire by yourself or call for a fire-brigade if you cannot do it.
  - NOT INTENTED FOR REAL FLIGHTS.

- perform as soon as possible

5



- closefull power
- switch OFF
- switch OFF

- close
- close
- full power
- switch OFF after the fuel in carburetors is consumed and engine shut down
- switch OFF



#### NOTE

Estimated time to pump fuel out of carburetors is about 30 [sec].

#### WARNING

Do not attempt to re-start the engine!

#### **Electrical fire in flight**

- 1. Master switch
- 2. Other switches switch OFF
- 3. Heating

4. Ventilation

- open
- 5. Use the fire extinguisher (if installed)
- 6. Emergency landing perform as soon as possible

#### Generator failure

 GEN "OFF" highlighted red and blinking, bringing up the alarm bar at the bottom of the EMS screen with message, triggering the external EMS warning light and audio alert

- switch OFF

- close

- Voltmeter (on EMS screen) indicates voltage under 12.5 V.
- Ammeter (on EMS screen) permanently indicates negative current independently on engine RPM.
- 1. Switch OFF

3. Voltmeter

- all unnecessary electrical equipment
   Master, Instruments and Avionics
- 2. Switch ON
- monitor voltage of battery
- 4. Land as soon as possible at nearest suitable airport.

#### CAUTION

Use transceiver, transponder and GPS as necessary, short time only. Operating time of battery in good condition is up to 15 minutes. The engine runs independently on generator functioning.

#### Inadvertent spin recovery

There is no uncontrollable tendency of the airplane to enter into a spin provided the normal piloting techniques are used.

#### Inadvertent spin recovery technique:

- 1. Throttle
- 2. Lateral control
- idle
   ailerons neutralized

- full opposite rudder

- 3. Rudder pedals
- 4. Rudder pedals
- 5. Longitudinal control
- neutralize rudder immediately when rotation stops

ALAREO

- neutralizes or push forward and recovery dive.

#### WARNING

INTENTIONAL SPINS ARE PROHIBITED!

#### Inadvertent icing encounter

#### CAUTION

Aircraft is approved to operate in VMC condition only!

1. Leave icing area

turn back or change altitude to reach area with

higher outside air temperature

- 2. Carburetor heating
- 3. Cabin heating
- 4. Increase RPM to minimize ice build-up on propeller blades
- 5. Continue to move control surfaces to maintain their moveability
- 6. In case of icing on the leading edge of wing, the stall speed will increase

open

open

- 7. In case of icing on the pitot probe, erroneous indicating of the airspeed and altimeter
- If you fail to recover the engine power or normal flight conditions, land on the nearest airfield (if possible) or depending on the circumstances, perform a precautionary



#### NOTE

The carburetor icing and air filter icing shows itself through a decrease in engine power and an increase of engine temperatures.

NOTE Use carburetor heating during lengthy descents and in areas of possible carburetor icing.

#### Obstruction of air into engine filter

If the engine runs rough and power decrease, air filter can be clogged with some impurities e.g. dust or ice. Perform:

1. Carburetor heating

- open

2. Check engine running and monitor engine instruments.

3. Land as soon as possible at nearest suitable airport.

If you fail to recover the engine power, land on the nearest airfield (if possible) or depending on the circumstances, perform a precautionary landing

#### 3.16 Engine vibration

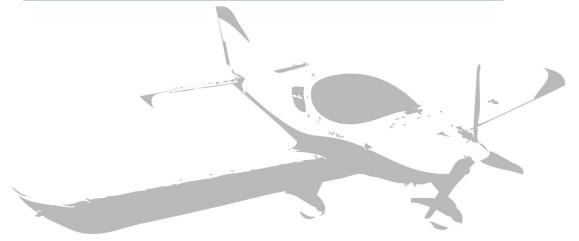
If any forced aircraft vibrations appear, it is necessary:

1. To set engine speed to such power rating where the vibrations are lowest.

2. To land on the nearest airfield or to perform a precautionary landing

#### Landing with a flat tire

- 1. During landing keep the damaged wheel above ground as long as possible using the ailerons control
- 2. Maintain the direction on the landing roll out, applying rudder control.


ALABEO

#### Landing with a defective landing gear

- 4. If the main landing gear is damaged, perform touch-down at the lowest practicable speed and if possible, maintain direction during landing run.
- 5. If the nose wheel is damaged perform touch-down at the lowest practicable speed and hold the nose wheel above the ground by means of the elevator control as long as possible.

# Normal Procedures







#### **Inspection Check List**

- 1.-
- Ignition
   Master switch
  - Master switch
     Instruments switch
  - Instrumen
  - Avionics
  - Control system

- OFF
- ON
- ON, check fuel quantity on indicators
- check condition
- visual inspection, function, clearance,
- free movement up to stops
- check wing flaps operation
- check trims operation
- OFF
- condition of attachment, cleanness
- Master and Instr. switches
- Canopy
- Check cockpit for loose objects
- 2.- Engine cowling condition
  - Propeller and spinner condition
  - Engine mount and exhaust manifold condition
  - Oil quantity check
    - before this check, ensure Ignition OFF, then turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank.
  - Coolant quantity check
  - Visual inspection of the fuel and electrical system
  - Fuel system draining
  - Other actions according to the engine manual
- 3.- Wing surface condition
  - Leading edge condition
    - Pitot head condition
- 4.- Wing tip surface condition, attachment
  - Aileron surface condition, attachment, clearance, free movement
  - Wing flap surface condition, attachment, clearance
- 5.- Landing gear wheel attachment, brakes, condition and pressure of tires
   Wing lower surface and fuselage bottom condition
- 6.- Vertical tail unit condition of surface, attachment, free movement, rudder stops
  - Horizontal tail unit condition of surface, attachment, free movement, elevator stops
     Check that left side the fuselage and wing is the same as right side.



#### WARNING

Physically check the fuel level before each takeoff to make sure you have sufficient fuel for the planned flight.

#### WARNING

In case of long-term parking it is recommended to turn the engine several times (Ignition OFF!) by turning the propeller. Always handle by palm the blade area i.e. do not grasp only the blade edge. It will facilitate engine starting.

#### Engine starting

#### Before engine starting

- 1. Control system
- 2. Canopy
- 3. Safety harness
- 4. Brakes

#### **Engine starting**

- 1. Throttle
- 2. Choke cold engine - warm engine
- 3. Fuel selector
- 4. Master switch
- 5. Fuel pump
- 6. Propeller area
- 7. Ignition switch
- 8. After engine starting
- 9. Choke
- 10 Throttle

- free & correct movement
- clean, closed and locked
- tiahten
- fully applied
- idle
- ON (fully pulled and hold)
- OFF
- turn on (left or right fuel tank in accordance with fuel tanks filling)
- switch ON
- switch ON
- clear
- hold activated to start the engine
- Instrument switch ON - switch OFF
- Fuel pump
- Avionics switch ON
- other switches switch ON as necessary
- gradually release during engine warming up
- maintain max. 2,500 [rpm] for warming up



#### CAUTION

- The starter should be activated for a maximum of 10 [sec], followed by 2 [min] pause for starter cooling.
- As soon as engine runs, adjust throttle to achieve smooth running at approx. 2,500 [rpm]. Check the oil pressure, which should increase within 10 [sec]. Increase the engine speed after the oil pressure has reached 29 [psi] (2 [bar]) and is steady.
- To avoid shock loading, start the engine with the throttle lever set for idling or 10 % open at maximum, then wait 3 [sec] to reach constant engine speed before new acceleration.
- Only one magneto should be switched ON (OFF) during ignition magneto check.

#### Engine warm up, Engine check

Prior to engine check block the main wheels using chocks.

Initially warm up the engine to 2,000 [rpm] for approximately 2 [min], then continue to 2,500 [rpm] till oil temperature reaches 122 [°F] (50 [°C]).

The warm up period depends on ambient air temperature.

The engine speed drop during the time either magneto switched OFF should not exceed 300 [rpm].

NOTE: Only one magneto should be switched ON (OFF) during ignition magneto check.

Set max. power for verification of max. speed with given propeller and engine parameters (temperatures and pressures).

Check acceleration from idling to max. power. If necessary, cool the engine at idle [rpm] before shutdown.

#### CAUTION

The engine check should be performed with the aircraft heading upwind and not on a loose terrain (the propeller may suck grit which can damage the leading edges of blades).

for more thank to be be a set of the set of



#### Taxiing

Apply power and brakes as needed. Apply brakes to control movement on ground. Taxi carefully when wind velocity exceeds 20 [knot]. Hold the control stick in neutral position.

#### **Normal Takeoff**

#### **Before takeoff**

1. Altimeter

8. Airplane lift-off

10. Wing flaps

9. Climb

- set
- 2. Trim
   set neutral position

   3. Control system
   check free movement

   4. Cockpit canopy
   closed and locked

   Recommendation: manually check by pushing the canopy upwards.

   5. Safety harness
   tighten

   6. Fuel selector
   turn ON (left or right fuel tank)
- 7. Ignition switch switched ON (both magnetos)
- 8. Wing flaps extend as necessary

#### Takeoff

- 1. Brakes
   apply to stop wheel rotation

   2. Takeoff power
   throttle fully forward (max. 5,800 [rpm] for max. 5 [min])

   3. Engine speed
   - check rpm

   4. Engine gauges
   - within limits

   5. Brakes
   - release

   6. Elevator
   - control stick pull
- 7. Nose wheel unstick 32 [knot] (37 [mph])
  - 42 [knot] (48 [mph])
  - after reaching airspeed
  - 65 [knot] (75 [mph])
  - retract at safe altitude

(max. airspeed for flaps using is 75 [knot], 86 [mph])



#### WARNING

Takeoff is prohibited if:

- Engine is running unsteadily
- Engine instrument values are beyond operational limits
- Aircraft systems (e.g. brakes or controls) work incorrectly

#### Climb

| 1. Throttle      | - max. takeoff power                                    |
|------------------|---------------------------------------------------------|
|                  | (max. 5,800 [rpm] for max. 5 [min])                     |
|                  | <ul> <li>max. continuous power (5,500 [rpm])</li> </ul> |
| 2. Airspeed      | - Vx = 60 [knot] (70 [mph])                             |
|                  | - Vy = 65 [knot] (75 [mph])                             |
| 3. Trim          | - trim the airplane                                     |
|                  |                                                         |
| 4. Engine gauges | - oil temperature, oil pressure and CHT within limits   |

#### CAUTION

If the cylinder head temperature or oil temperature and/or coolant temperature approaches or exceeds limits, reduce the climb angle to increase airspeed and possibly return within limits. If readings do not improve, troubleshoot causes other than high power setting at low airspeed.

| Best angle of climb | speed (Vx): | 60 [knot] (70 [mph]) |
|---------------------|-------------|----------------------|
|                     |             |                      |

Best rate of climb speed (Vy): 65 [knot] (75 [mph])

#### Descend

1. Optimum glide speed - 60 [knot] (70 [mph])

for more state to be state to be a first of the second state of th



#### Approach

- 1. Approach speed
- 2. Throttle
- 3. Wing flaps
- 4. Trim
- 5. Safety harness

- 60 [knot] (70 [mph])
- as necessary
- extend as necessary
- as necessary
- tighten

#### CAUTION

It is not advisable to reduce the engine throttle control lever to minimum on final approach and when descending from very high altitude. In such cases the engine becomes under-cooled and a loss of power may occur. Descent at increased idle (approximately 3,000 [rpm]), speed between 60-75 [knot] (70-86 [mph]) and check that the engine instruments indicate values within permitted limits.

#### **Normal landing**

#### **Before landing**

- 1. Throttle
- 2. Airspeed
- 3. Wing flaps
- 4. Trim

#### Landing

- 1. Throttle
- 2. Touch
- 3. Apply brakes

#### After landing

- 1. Throttle
- 2. Wing flaps
- 3. Trim

- as necessary
- 60 [knot] (70 [mph])
- extend as necessary
- as necessary
- idle
- -down on main wheels
- as necessary
- (after the nose wheel touch-down)
- engine rpm set as required for taxiing
- retract
- set neutral position



#### Engine shut down

- 1. Throttle
- 2. Instruments
- 3. Switches
- 4. Ignition switch
- Instrument switch
   Master switch
- turn key to switch OFF - switch OFF
- switch OFF

- idle

- 7. Fuel Selector
- close

#### CAUTION

- engine instruments within limits

- switch OFF - except Instrument and Master

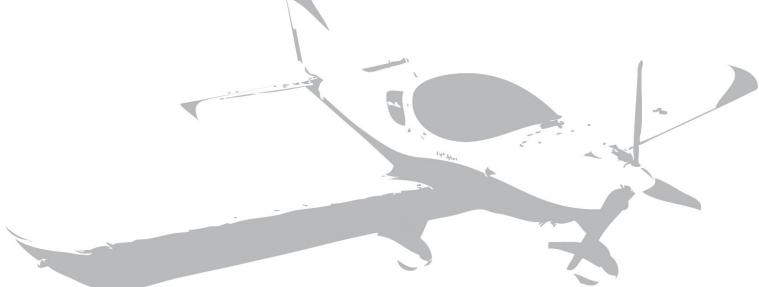
Rapid engine cooling should be avoided during operation. This happens above all during aircraft descent, taxiing and low engine [rpm] or at engine shutdown immediately after landing.

Under normal conditions the engine temperatures stabilize during descent, taxiing and at values suitable to stop engine by switching the ignition off. If necessary, cool the engine at idle [rpm] to stabilize the temperatures prior to engine shut down.



#### Aircraft parking and tie-down

- 1. Ignition switch
- 2. Master switch
- 3. Fuel selector
- 4. Parking brake
- 5. Canopy
- 6. Secure the airplane
- OFF
- OFF
- close
- use it as necessary (if installed)
- close, lock as necessary


#### NOTE

It is recommended to use parking brake (if installed) for short-time parking only, between flights during a flight day. After ending the flight day or at low temperatures of ambient air, do not use parking brake, but use the wheel chocks instead.

#### NOTE

Use anchor eyes on the wings and fuselage rear section to fix the airplane. Move control stick forward and fix it together with the rudder pedals. Make sure that the cockpit canopy is properly closed and locked. The anchoring before leaving the

# Performance Tables



ALABEO.



# Cruise speeds

| Altitude | Engine<br>speed | IAS  |     | CA   | s   |
|----------|-----------------|------|-----|------|-----|
| ft       | rpm             | knot | mph | knot | mph |
|          | 4200            | 77   | 89  | 77   | 88  |
|          | 4500            | 86   | 99  | 85   | 98  |
|          | 4800            | 95   | 109 | 93   | 107 |
| 1000     | 5000            | 101  | 116 | 98   | 113 |
|          | 5300            | 110  | 126 | 106  | 122 |
|          | 5500            | 116  | 133 | 111  | 128 |
|          | 5800            | 125  | 143 | 119  | 137 |
|          | 4200            | 75   | 86  | 75   | 86  |
|          | 4500            | 83   | 96  | 82   | 94  |
|          | 4800            | 92   | 106 | 90   | 104 |
| 3000     | 5000            | 97   | 112 | 95   | 109 |
|          | 5300            | 106  | 122 | 103  | 118 |
|          | 5500            | 112  | 129 | 108  | 124 |
|          | 5800            | 120  | 139 | 116  | 133 |
|          | 4200            | 72   | 83  | 72   | 83  |
|          | 4500            | 80   | 92  | 79   | 91  |
|          | 4800            | 88   | 101 | 86   | 99  |
| 5000     | 5000            | 94   | 108 | 92   | 106 |
|          | 5300            | 102  | 117 | 99   | 114 |
|          | 5500            | 107  | 124 | 104  | 120 |
|          | 5800            | 116  | 134 | 112  | 129 |
|          | 4200            | 69   | 79  | 70   | 80  |
|          | 4500            | 77   | 88  | 77   | 88  |
|          | 4800            | 84   | 97  | 83   | 96  |
| 7000     | 5000            | 90   | 103 | 88   | 101 |
|          | 5300            | 97   | 112 | 95   | 109 |
|          | 5500            | 103  | 118 | 100  | 115 |
|          | 5800            | 111  | 127 | 107  | 123 |
|          | 4200            | 65   | 75  | 66   | 76  |
|          | 4500            | 73   | 84  | 73   | 84  |
|          | 4800            | 80   | 93  | 80   | 92  |
| 9000     | 5000            | 85   | 98  | 84   | 97  |
|          | 5300            | 93   | 107 | 91   | 104 |
|          | 5500            | 98   | 112 | 95   | 109 |
|          | 5800            | 105  | 121 | 102  | 117 |



# **RPM setting and fuel consumption**

| A                                              | Altitude                                       | ft             | 3,000                           |         |       |      |      |      |
|------------------------------------------------|------------------------------------------------|----------------|---------------------------------|---------|-------|------|------|------|
| Eng                                            | ine speed                                      | rpm            | 4,200 4,500 4,800 5,000 5,300 5 |         | 5,500 |      |      |      |
| Fuel                                           |                                                | l/h            | 11.5                            | 14.0    | 16.5  | 18.5 | 21.0 | 23.0 |
| con                                            | sumption                                       | US gal/h       | 3.04                            | 3.70    | 4.36  | 4.89 | 5.55 | 6.08 |
|                                                | IAS                                            | knot           | 75                              | 83      | 92    | 97   | 106  | 112  |
| 6<br>G                                         |                                                | mph            | 86                              | 95      | 106   | 111  | 122  | 129  |
| Airspeed                                       | CAS                                            | knot           | 75                              | 82      | 90    | 95   | 103  | 108  |
| l rs                                           |                                                | mph            | 86                              | 94      | 104   | 109  | 118  | 124  |
|                                                | TAS                                            | knot           | 78                              | 85      | 93    | 98   | 106  | 111  |
| <u> </u>                                       |                                                | mph            | 90                              | 98      | 107   | 113  | 122  | 128  |
| Endu                                           | rance and Rai                                  | nge at 29.85 L | JS gal (113                     | liters) |       |      |      |      |
| En                                             | Idurance                                       | hh:mm          | 9:50                            | 8:04    | 6:51  | 6:06 | 5:23 | 4:55 |
| Ι.                                             | Dango                                          | NM             | 766                             | 686     | 637   | 599  | 570  | 545  |
| '                                              | Range                                          | SM             | 881                             | 789     | 732   | 688  | 656  | 627  |
| Endu                                           | rance and Ra                                   | nge at 23.77 l | US gal (90                      | liters) |       |      |      |      |
| Er                                             | ndurance                                       | hh:mm          | 7:50                            | 6:26    | 5:27  | 4:52 | 4:17 | 3:55 |
|                                                | Denero                                         | NM             | 610                             | 546     | 507   | 477  | 454  | 434  |
|                                                | Range                                          | SM             | 702                             | 628     | 583   | 548  | 522  | 500  |
| Endu                                           | rance and Ra                                   | nge at 15.85 l | US gal (60                      | liters) |       |      |      |      |
| Er                                             | ndurance                                       | hh:mm          | 5:13                            | 4:17    | 3:38  | 3:14 | 2:52 | 2:37 |
|                                                | Danga                                          | NM             | 407                             | 364     | 338   | 318  | 303  | 290  |
|                                                | Range                                          | SM             | 468                             | 419     | 389   | 366  | 348  | 333  |
| Endu                                           | Endurance and Range at 7.92 US gal (30 liters) |                |                                 |         |       |      |      |      |
| Er                                             | ndurance                                       | hh:mm          | 2:37                            | 2:08    | 1:49  | 1:37 | 1:26 | 1:18 |
|                                                | Range                                          | NM             | 203                             | 182     | 169   | 159  | 151  | 145  |
|                                                | lange                                          | SM             | 234                             | 209     | 194   | 183  | 174  | 167  |
| Endurance and Range at 3.96 US gal (15 liters) |                                                |                |                                 |         |       |      |      |      |
| Er                                             | ndurance                                       | hh:mm          | 1:18                            | 1:04    | 0:55  | 0:49 | 0:43 | 0:39 |
|                                                | Range                                          | NM             | 102                             | 91      | 85    | 79   | 76   | 72   |
| Range                                          |                                                | SM             | 117                             | 105     | 97    | 91   | 87   | 83   |





# LIMITATIONS

# Airspeed indicator range markings

# NOTE

The stated stall speeds are valid for all flight altitudes.

| Marking       | IAS value o | r range | Significance                                                     |  |
|---------------|-------------|---------|------------------------------------------------------------------|--|
| g             | knot        | mph     | 0.9                                                              |  |
| White<br>arc  | 32-75       | 37-86   | Flap Operating Range.                                            |  |
| Green<br>arc  | 39-108      | 45-124  | Normal Operating Range.                                          |  |
| Yellow<br>arc | 108-138     | 124-158 | Maneuvers must be conducted with caution and only in smooth air. |  |
| Red line      | 138         | 158     | Maximum speed for all operations.                                |  |



## **RPM setting and fuel consumption**

Flap extended speed range - Vso to VFE Flap operating range (IAS): 32 - 75 [knot] (37 - 86 [mph])

Maneuvering speed - VA

Maneuvering speed (IAS) at 1,320 [lb]: 88 [knot] (101 [mph])

Maneuvering speed (IAS) at 900 [Ib]: 70 [knot] (80 [mph])

# Maximum structural cruising speed – VNO

Maximum structural cruising speed (IAS): 108 [knot] (124 [mph])

# Never exceed speed - VNE

Never exceed (IAS):

138 [knot] (158 [mph])

# Service ceiling

Service celiling......10,000 [ft]

# Load factors

Maximum positive limit load factor...... + 4 g Maximum positive limit load factor...... - 2 g

# Approved maneuvers

The Sport Cruiser is approved for normal and below listed maneuvers:

- Steep turns not exceeding 60° bank
- Lazy eights
- Chandelles
- Stalls (except whip stalls)