Unleash your ingenuity with foreverloops — a hybrid sandbox game and productivity software for creative minds and discerning gamers.

Virtual gears let you interface with a new world of media compositions and performances to produce killer beats, rhythmic mashups, audio visual collages, and much much more.

A unique and rewarding experience awaits!
contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>health warning</td>
<td>1</td>
</tr>
<tr>
<td>Advice / games & health (PEGI)</td>
<td>1</td>
</tr>
<tr>
<td>quick start</td>
<td>2</td>
</tr>
<tr>
<td>create gears</td>
<td>3</td>
</tr>
<tr>
<td>connect / stack gears</td>
<td>3</td>
</tr>
<tr>
<td>program gears</td>
<td>4</td>
</tr>
<tr>
<td>gear context</td>
<td>5</td>
</tr>
<tr>
<td>user interface</td>
<td>6</td>
</tr>
<tr>
<td>canvas</td>
<td>6</td>
</tr>
<tr>
<td>menu bar</td>
<td>7</td>
</tr>
<tr>
<td>sample browser</td>
<td>9</td>
</tr>
<tr>
<td>video panel</td>
<td>10</td>
</tr>
<tr>
<td>context menu</td>
<td>10</td>
</tr>
<tr>
<td>playing</td>
<td>11</td>
</tr>
<tr>
<td>gear mechanics</td>
<td>11</td>
</tr>
<tr>
<td>media samples</td>
<td>15</td>
</tr>
<tr>
<td>gear types</td>
<td>16</td>
</tr>
<tr>
<td>options</td>
<td>23</td>
</tr>
<tr>
<td>general settings</td>
<td>23</td>
</tr>
<tr>
<td>display settings</td>
<td>24</td>
</tr>
<tr>
<td>sound settings</td>
<td>24</td>
</tr>
<tr>
<td>interaction settings</td>
<td>25</td>
</tr>
<tr>
<td>export settings</td>
<td>26</td>
</tr>
<tr>
<td>key bindings</td>
<td>26</td>
</tr>
<tr>
<td>tips & tricks & troubleshooting</td>
<td>27</td>
</tr>
<tr>
<td>video decoding</td>
<td>27</td>
</tr>
<tr>
<td>audio decoding</td>
<td>27</td>
</tr>
<tr>
<td>hardware requirements</td>
<td>27</td>
</tr>
<tr>
<td>loading</td>
<td>27</td>
</tr>
<tr>
<td>system requirements</td>
<td>28</td>
</tr>
<tr>
<td>support / contact</td>
<td>29</td>
</tr>
<tr>
<td>about foreverloops</td>
<td>29</td>
</tr>
<tr>
<td>credits / special thanks / promoters</td>
<td>30</td>
</tr>
<tr>
<td>concept & idea / project lead / software engineering</td>
<td>30</td>
</tr>
<tr>
<td>interaction design / art direction / qa</td>
<td>30</td>
</tr>
</tbody>
</table>
application design .. 30
sound samples ... 30
video samples ... 30
demo composition .. 30
translations ... 30
special thanks ... 31
promoters ... 31
end-user license agreement .. 32
Advice / games & health (PEGI)
Gaming does not pose specific health risks. It is a leisure activity, just more interactive than reading books or watching television. As it involves the use of your eyesight we generally advise players to follow these guidelines:

Always play in a well-lit room
Take regular breaks.
Don’t play a game for hours on end, no matter how compelling it may be.
Keep a minimum distance from the screen.

Is it possible for my child to become addicted to games?
Playing video games is not a physical addiction. Children play games because they enjoy them; and some enjoy them more than others. While playing a video game they may be blinkered to everything else that goes on around them (the same goes for watching movies or television).

Can gaming cause epilepsy?
No. Exhaustive research has found that epilepsy cannot be caused by playing videogames. However, an extremely small number of people, who already have Photosensitive Epilepsy, may actually realize that they have this condition when playing videogames. However, experiences such as watching television, going to a discotheque, or even experiencing light flickering through trees can bring about.

For more information:

www.pegi.info/en/index/id/11
www.pubmedcentral.nih.gov
www.isfe.eu
In foreverloops, gears combine mechanical principles (i.e., transmission, stacking, driving) with the virtuality of a software simulation to afford many opportunities for audio–visual creations.

Create and program your own gear trains and evolve them from simple experiments to awe-inspiring complex media machineries that can be tweaked and customized in real-time.
create gears

To create gears, simply drag a gear icon from the menu bar onto the canvas. There is no limit to the number of constructible gears you can create.

Currently, foreverloops supports three different gear types. Drive gears (left) activate gear trains and are responsible for the tempo. Sequencer gears (right) and scratch gears (center) can be setup with media samples (audio, video, image), which play back as the gears rotate. For a simple composition, you need a drive gear that is connected with at least one media gear filled with samples.

connect / stack gears

It is also possible to directly connect or stack newly created gears. This way, you can construct complex gear trains quickly.
Of course, gear connections can be established or broken at any time by dragging a gear to where you want it. You can also move groups of gears or even whole trains at once just by moving the lowermost gear of a stack.

program gears

_foreverloops gears can be interfaced with all kinds of audio–visual materials. To select a sample (either audio or image), just click on it in the sample browser window. To see or hear a quick preview, you can double-click on it to start playback immediately.

As soon as you select a sample, you can feed it into the gears (sequencer and scratch gears). To do so, simply click on a sequencer or scratch gear – this sets up a sample that will be triggered as soon as it passes the sampler (shown as line). Obviously, to get an output, the relevant gear must be active or, in other words, rotated by a connected or stacked drive gear.
In foreverloops, virtual gears have different contexts that very much depend on the gear type and its current topology: You can alter drive gears in different ways than you do sequencer gears.

For instance, the speed of a drive gear can be altered as follows:

- right-clicking the drive gear to open the context menu, and then
- clicking double speed, halve speed, or reverse speed

When you right-click a sequencer gear, a different context menu will open. With it, you can setup sample volumes, among other things. However, it is not possible to alter its speed, as this is entirely dependent on the connected drives.
This section covers the central user interface elements of foreverloops: canvas, menu bar, sample (and directory) browser, video panel, and gear context menus.

canvas

The canvas is the area where gears can be created, moved around, and setup with samples. It offers plenty of space for multiple gear trains and individual gears. It also provides an overview of ongoing occurrences.

With the canvas, you can enlarge and focus on particular sections by zooming (using the mouse wheel) and dragging.
menu bar

The menu bar allows you to create gears, receive feedback, acquire information, engage or disable particular modes, and enable or hide UI elements.

The menu is organized into several sections:

- Gear creation section
- Information section
- Undo / redo
- Modes section

gear creation section

This section contains icons for the different gear types: drive, sequencer, and scratch. By dragging an icon onto the canvas, you can create and connect or even stack gears. Clicking on the icon and then clicking on the canvas has the same effect.

information

The information section displays context information, notifies you about possible interactions (including key bindings), and generally gives feedback. In addition, pushing the left mouse button in the information area enables the information mode, which temporarily labels the media samples on the canvas.

undo / redo

Undo will revert to the last action, whereas redo will repeat them. Note that it is not always possible to undo / redo. Also, the information section will display more details when you hover over the undo or redo button.

modes

The mode section enables you to alter global behaviors:

Pause / play stops or re-activates all the drives on the canvas.
Alter the gear synchronization behavior. If enabled (default), gears you connect or stack with other gears will be aligned towards the target. This function is very useful for achieving appealing compositions quickly; however, sometimes you will prefer to manually synchronize.

Visual representation of the gear rotation. You can select either the gear-rotation mode (default); or the rotate-sampler mode, which is more common in radial sequencers.

Toggle between the gear move and scratch modes. With the move mode, you can move, connect, and stack gears. The scratch mode on the other hand lets you drive and activate gears as well as gear trains by manually rotating (scratching) relevant gears.

capture

The capture function lets you record your composition / performance. You can either record just the audio output, which generates an audio file in the recordings folder, or a combined audio/video output. For the latter, a video file is created. In both cases, pushing either button will start the capture, which will finish when you press the button again or hit the escape key.

UI

The UI (user interface) functions allow you to show / hide the video panel and the sample browser.

exit to menu

Lastly, pushing the menu button will bring you back to the menu scene. From there, you can save and load scenes, alter the settings, or quit foreverloops.
With the sample browser, you can flip through media material, initiate sample playback, and import your own loops, pics, and flicks. Most importantly, the sample browser allows you to select the sample to be used for gear programming.

Its user interface consists of two parts:

directory browser

The directory browser, once folded out, lets you add additional media directories. For instance, you can add “My pictures” this way and use all the image files from there in foreverloops. Likewise, you can also remove sample directories if the sample browser becomes packed too full.

sample browser

The sample browser lets you check over your media material (you can use the mouse wheel to scroll up / down), preview it (double clicking a sample makes it play once), and select it for later use in gears. It upholds a folder structure that is analogous to an underlying file system, and displays the sample type (either audio, image, or video), the name of the sample along its file extension, and its duration. On the very bottom, you will find a button for folding out or hiding the directory browser.
The video panel represents the primary output channel for visual sample material, e.g., pictures and videos. So, when you double-click on an image sample, it is displayed in the video panel.

The video panel can be hidden, resized, and put into the foreground or background (using the mouse wheel).

With the context menu, you can alter various aspects of individual gears. For example, you can alter sample volumes, de-activate drives, alter the number of segments, or delete gears. To open this menu, right-click a gear on the canvas. The context menu is then displayed around the gear.
The available functions of the different context menus are explained in more detail in the gear type section.

The underlying physics simulation inspires a playful and adventuresome attitude. Playful activities and free-form experimentation stimulate engaging compositions, arrangements, and performances. Also, by simply playing with gears you learn how to use them. This section explains relevant mechanical principles in detail.

gear mechanics

Gears, gear meshes, and gear trains provide unprecedented possibilities for music-making and performances. foreverloops lets you create virtual gear trains - mechanical systems comprising connected gears whose teeth are engaged.

In the following, we introduce the uses and effects of translation / transmission, driven gear trains, and Leibniz gears. Note that foreverloops ignores gear slippage for simplicity and usability. Also, the number of cogs is assumed to be proportional to the circumference of the gears.
In foreverloops, the angular speed ratio of two gears is inversely proportional to the ratio of the circumference. The speed ratios are determined by the circumference of the interconnected gears, as shown below:

Following the laws of mechanics, the direction of rotation is reversed for interleaved gears. So-called in-betweeners, or idler-gears, can be inserted to cancel this direction change, as shown below:

Generally, if an output gear has more cogs than the input gear, the gear train is *amplified* (input torque), resulting in higher beats per minute (BPM). Likewise, if the output gear has fewer cogs than the input gear, the gear train is *reduced* (input torque), thereby lowering the BPM.

foreverloops supports four different gear sizes to cover a wide range of well-known rhythm patterns.
Additional transmission ratios can be achieved by combining transmission with stacking, i.e. the axial connection of gears.

This option can be useful for merging different gear types or configurations into a stack. A stack is created when several gears share an axial connection. To initiate axial connections, smaller gears must be put onto larger gears.

driving gear trains

Without explicit user input, only drive and scratch gears can activate gear trains, whereas only sequencer and scratch gears can produce visual and / or audio output.
It is possible to activate gear trains with multiple drives; drives can be added and removed from a train at any time. Adding to or reducing the overall speed of a train in this way can also be a performative element.

The total speed applied to a gear train equals the sum of all the applied rotational speeds: trailed and stacked gears are considered recursively.

logics

Drive gears can be Leibniz-wheels, or in plain English, gears with truncated cogs:

A drive gear with truncated cogs does not contribute to the overall gear train speed for a certain time period.

This mechanism facilitates basic programmable logic.
media samples

With audio-visual samples, foreverloops evolves from a basic real-time gear mechanics simulator to a multi-media composition and performance software toy.

The supported media types include sound and music files, images, and videos. Audio material is decoded in real time and played back concurrently, whereas videos and images use interruption semantics and they are played back exclusively.

trigger / scratch

For audio and video samples, we differentiate between sequencing and scratching.

In sequencer gears, samples, once triggered, are played in a forward direction at normal speed. This is useful when compositions are formed by many short samples, such as rhythm patterns, stop motion clips, or melodies.

In contrast, scratching matches the sample playback direction and speed with the current angular speed of the scratch gear. It is primarily intended for use with longer, more ambient samples, when tempo changes are desired in either the audio or video, or when the source material needs to be a specific length.

image

Image samples are decoded on load time, and then played back exclusively. They are active as long as their segment is active. In other words, for images, the playback durations depend on both the segment widths and the playback speeds.

video

Video samples are decoded and played back in real-time. Only one video or image sample can be active at any time, and the most recently triggered video or image sample is given preference.

Video samples can be scratched and triggered, and the audio track of the video, if available, is played back accordingly.
There are two core gear types: the drive gear and the media gear. Drive gears are used to manipulate rotation speeds, whereas media gears embed and play audio, image, and video samples.

The scratch gear counts towards both categories: it can actively drive a gear train, but can also initiate sample playback on its own.

In a nutshell, drive gears activate gear trains, sequencer gears implement sample triggering, and scratch gears combine drives with single-sample scratch playback.
drive gear

A drive gear

- cannot contain media samples
- can activate gear trains
- is programmable (to become a Leibniz wheel)
- can have different sizes, which affects the speed ratios of attached gears
- can be combined with other drives to achieve additional speed / translation ratios
- when combined with other drives, causes the speeds to add up

With the drive context menu, you can:

- delete the drive gear
- clone the drive gear
- synchronize it to another drive:
 - When you synchronize a drive to another drive or scratch gear, the synchronized drive will have the same speed as the other individual drive, as well as the same current rotation. Also, any connected or stacked gears will be affected by a rotational synchronization. With this feature, you can straighten up multiple asynchronous trains. Drives can also take over the speed of the scratch gears, which enables the combined use of scratch gears and Leibniz wheels.
- resize the drive gear:
When you resize a drive gear, its angular velocity is not changed - it still needs the same time to complete one rotation. However, connected gears are affected by a different translation ratio, and therefore rotate either faster or slower.

- **edit segment count:**
 Altering the number of segments of a drive gear can be useful for several reasons. It affects the Leibniz semantics, i.e. you can create a counter from 1 to 10 by specifying (and later programming) 10 segments. Also, when you specify just one segment, you can then activate or deactivate gear trains by clicking once on the drive.

- **change offset:**
 Altering the gear offset only affects Leibniz wheels. With it, you can create a temporal skew.

- **reverse direction**
- **double speed**
- **halve speed**
- **turn off / turn on:**
 When a drive gear is turned off, it no longer activates gear trains or contributes to the overall speed of its train. However, it still may rotate when it is driven by other gears. With a turned-off drive, you can add Leibniz semantics to a scratch gear by simply stacking gears onto it.
sequencer gear

A sequencer gear

- cannot activate gear trains by itself
- can be programmed with media samples
 - that, once triggered, are played back in normal speed
- can contain mixed and arbitrary media samples and types
- can be stacked with other sequencer gears to achieve interesting bar measures

With the sequencer context menu, you can:

- delete the sequencer gear
- copy the sequencer gear
- resize the sequencer gear
- edit the segments of the sequencer gear:

 When you alter the number of sequencer gear segments, foreverloops will try to preserve any set samples and apply them to the new segment count. For the time being, it is not possible to specify an arbitrary segment count. Currently, the options are limited to numbers that are useful for (musical) composition. In combination with stacking, different segment counts allow for particularly interesting bar measures and rhythm patterns.
• **change offset:**
 Altering the rotational offset allows you to introduce temporal skews. For example, you can shift the sequencer gear by half a stroke to easily vary your rhythm. Alternatively, you can copy a sequencer gear, change its rotational offset, and play it alongside the original for an interesting effect.

• **change volume:**
 This function lets you specify the volumes of the gear media samples. Note that samples volumes are also applied when new samples are programmed. Also, foreverloops will try to manually preserve set sample volumes when the segment count is altered.

• **mute:**
 This function mutes / unmutes the entire gear, and thus enables or disables sample triggering. Note that image and image samples are not displayed when their gears are muted.
A scratch gear

- can activate gear trains AND
- initiate sample playback
- implements scratch semantics, i.e., the actual speed affects the media playback speed
- does not start by itself, i.e., it must be turned on once a sample is set to actively drive
- has a default speed that corresponds to the sample duration, i.e., will play its sample with normal speed by default
- can contain ONE sample of an arbitrary type
- cannot become a Leibniz wheel by itself
 - but can easily be combined with a Leibniz wheel

With the scratch gear context menu, you can:

- delete the scratch gear
- copy the scratch gear
• synchronize the scratch gear to another drive:

When you synchronize to another drive or scratch gear, the scratch gear will have the same speed as the other drive, and the same current rotation. Also, any connected or stacked gears will be affected by a rotational synchronization.

• resize the scratch gear:

Resizing a scratch gear has the same implications as resizing a drive gear: When you resize it, its speed is not changed, it still requires the same time to complete one rotation. However, connected gears are affected by the different translation ratio, and therefore rotate faster or slower.

• change offset:

Altering the rotational offset allows you to introduce temporal skews.

• reverse gear rotation:

When you reverse the rotation of a scratch gear, it drives attached gears into the opposite direction. Its sample is played backwards as well.

• double speed

When you double the rotation speed of a scratch gear, it also drives other gears with double speed. Its sample is played twice as fast.

• halve speed

When you halve the rotation speed of a scratch gear, it also drives other gears with half speed. Its sample is played half as fast.

• turn off / turn on:

When a scratch gear is turned off, it no longer activates gear trains or contributes to the overall speed of its train. However, it still may rotate when driven by other gears. In this case, its set sample is played back accordingly.

• change volume:

This function lets you specify the sample volume.

• mute:

This function mutes / unmutes the entire gear, and in thus enables or disables the sample playback. Note that image samples are not shown when the gear is muted.
foreverloops can be customized via options from the main menu. You can change the language, switch to full screen mode, alter the audio device, and define your own key bindings, to name a few. In this section, we walk you through the possible adjustments.

general settings

The general settings section comprises more behavioral settings:

- **language**

 Allows you to setup the language. Once changed, the new language is applied immediately, no restart is required.

- **logging**

 Enables / disables real-time logging to a file. If enabled, it may help find the causes of problems or bugs. Logging is enabled by default.

- **sync after scratching**

 If enabled, this option enables a mechanism for gear synchronization that is only applied after manual scratching interactions. Ideally, your scene is reset to a state if no manual scratching has occurred. If disabled, no synchronization is performed after manual scratching and your scene continues from where it left off.

- **default drive speed**

 With this setting, you can alter the speed of newly created drive gears. The default value is 0.25, which means that a full rotation takes four seconds, regardless of the gear size. The drive speed directly affects the beats per minute—the faster the drives, the faster your music. Note that this only sets the default speed. Once created, you can speed up or slow down individual drives.

- **auto start scratch gear**

 If enabled, scratch gears automatically start to play once a sample is set. Otherwise, you must start scratch gears manually, or activate them with other drives.

- **uniform rotation editing**

 This setting affects how gears are displayed when you hover over them. Usually, when you hover over a gear, its visual representation stops rotating and instead the sampler circulates. Otherwise, it would be very difficult to set up media samples. When uniform rotation editing is disabled, the visible rotation stops right where it was, thereby minimizing visual disruptions. When enabled, the visible rotation is always reset to twelve o’clock. Therefore, it emphasizes the beginning of each loop, and streamlines the programming of rhythm patterns.
• auto reset scratch gear
 If enabled, this option will reset the scratch gear rotation to twelve o’clock when a new sample is set.

display settings

In the display settings section, you can alter several graphics properties:

• full screen
 If enabled, foreverloops switches into full screen mode, otherwise it can be used as a windowed application.

• vertical sync
 Vertical sync prevents screen tearing by linking the video refresh rate to the rate your screen supports. Also, it is likely to lower overall power consumption.

• show fps
 If enabled, the current frames per second are displayed in the main scene.

sound settings

In the sound settings sections, you can alter properties related to the audio device and sound sample playback:

• audio device
 Here, you can choose the audio device you want to use with foreverloops. Altering the audio device will re-initialize the audio system. Any changes are applied on-the-fly, with no restart necessary.

• sampling frequency
 This option lets you specify the sound sampling frequency. Common values are 44100 Hz for CD quality and 48000 Hz for DVD quality.

• auto ramp in
 If enabled, the setting will avoid clicks and other annoyances during playback, as newly triggered audio samples will be ramped. If disabled, audio triggering is slightly faster.

• scratching affects pitch
 This setting determines how audio samples should playback from a scratch gear with reduced or increased speed. If scratching affects pitch is set, both sound tempo and pitch are affected, which sounds like an LP being played at the wrong speed.

• audio threads
Here, you can set the number of audio threads for playback processing. Generally, more threads take advantage of additional CPU cores. You can also set this parameter to zero for synchronous updating. Depending on your sound hardware, this may lead to more or even reduce audio glitches.

- **buffer size**

 This setting determines the playback buffer length. For slower computers, we recommend larger values to avoid stutters and breaking-ups. Otherwise, smaller values generally improve latency.

interaction settings

The interaction settings section lets you specify zoom and pan behavior:

- **pan speed**

 If you find the default pan speed too slow or too fast, you can alter this value.

- **reverse pan direction**

 If enabled, panning direction will be the reverse interaction direction. In many games, this is the default behavior.

- **zoom speed**

 If you find the default zoom speed too slow or too fast, you can alter this value.

- **reverse zoom direction**

 If enabled, zooming direction will be the reverse interaction direction. In many games, this is the default behavior.
export settings

In the export settings sections, you can specify the overall quality of video captures, and where captures are filed:

- **video capture quality**
 Here you can specify the quality with which video captures are recorded. As a rule of thumb, the higher the quality, the bigger the resulting files.

- **capture directory**
 Here you can specify the directory in which the captures are filed.

- **open capture directory**
 If pushed, this button will open the currently set capture directory.

key bindings

The key bindings section lets you alter the default key bindings and create your own shortcuts. Every control can have up to two key assignments, and these key assignments can combine multiple keys (e.g., the letter ‘E’ and the modifier key ‘SHIFT’). There are specific key bindings you cannot alter (modify, exit, delete). Also, it is not possible to assign ambiguous keys. If you assign a key that is already used for something else, the old binding will be discarded, as indicated by a warning message.

Custom key bindings can really speed up your workflow. For example, you can assign the left mouse button (LMB) alongside modifier keys (ALT / SHIFT / CTRL) to the gear creation commands.
video decoding

Real-time video scratching requires specific codecs that support real-time jumps between various frames. Therefore, we use the MJPEG codec to encode your footage. If you experience any troubles (like stutter or delays) in the video output, we recommend the following to help improve the situation:

- lower the resolution of your footage
- use an SSD for the video material
- capture videos to a different drive than that in which your source material is located to reduce bus clashes

Video decoding depends on both, the CPU and the GPU.

audio decoding

Audio decoding depends on your CPU power and your audio chip. If you experience any acoustical problems (like clicks or shutter), adjust the audio buffer size in the sound settings of the options menu.

hardware requirements

The computational power needs increase with:

- the number of audio files played back at the same time
- the number of images used in a scene
- the resolution of the video files used
- the quality set for video captures

The following only slightly influences the hardware requirements:

- number of gears used in a scene
- number of audio or video files fed into inactive gears
- higher gear segmentation

loading

If loading the scenes slows down, try to decrease the number of files listed in the sample browser to the required minimum.
system requirements

minimum requirements

<table>
<thead>
<tr>
<th>OS</th>
<th>Windows 7 (Service Pack 1 + convenience rollup) 32-bit or higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU*</td>
<td>Intel Core 2 Duo Processor 2.0 GHz or equivalent</td>
</tr>
<tr>
<td>RAM*</td>
<td>4 GB or more</td>
</tr>
<tr>
<td>GPU*</td>
<td>DirectX 11.1 compatible graphics card</td>
</tr>
<tr>
<td></td>
<td>at least 1 GB video RAM</td>
</tr>
<tr>
<td>HDD</td>
<td>1 GB free hard disk space</td>
</tr>
<tr>
<td></td>
<td>SSD recommended for samples</td>
</tr>
<tr>
<td>Sound card</td>
<td>required</td>
</tr>
</tbody>
</table>

* foreverloops requires hardware with less memory or computational power than listed here, but using more media files, and playing them back at the same time, increases these requirements.

recommended system setup

<table>
<thead>
<tr>
<th>OS</th>
<th>Windows 10 or higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel i5 2.4 GHz or equivalent</td>
</tr>
<tr>
<td>RAM</td>
<td>8 GB or more</td>
</tr>
<tr>
<td>GPU</td>
<td>DirectX 11.1 compatible Nvidia or ATI graphics card</td>
</tr>
<tr>
<td></td>
<td>at least 2 GB video RAM</td>
</tr>
<tr>
<td>HDD</td>
<td>2 GB free hard disk space</td>
</tr>
<tr>
<td></td>
<td>SSD recommended for samples</td>
</tr>
<tr>
<td>Sound card</td>
<td>required</td>
</tr>
</tbody>
</table>
If you’re having a problem with a particular foreverloops feature or you’re experiencing a bug, you can email our support team and they’ll get back to you quickly: support@foreverloops.com

For other inquiries, please email us at contact@foreverloops.com

foreverloops is also the name of our newly founded (2017) Austrian start-up.

Our mission and our passion is to build software that helps you effect astonishing outputs by simply playing around.

We strongly believe in your creative potentials through (digital) play activities and we want you to utilize and advance them!

Connect with us through social media to stay up-to-date with our latest news and ongoing developments, join topical discussions and share your creations!

Subscribe our YouTube channel for up-to-the-minute videos, to watch tutorials, and to learn new tricks!

If you would like additional features, have questions about specific components, or want to critique foreverloops, our forum on Steam is a good place.
credits / special thanks / promoters

concept & idea / project lead / software engineering
interaction design / art direction / qa

marlene brandstätter & ulrich brandstätter

application design

LIVINGROOM digital solutions GmbH
www.livingroom.co.at

sound samples

reinhard gupfinger
www.gupfinger.net

video samples

michael wirthig & verena henetmayr

demo composition

xorGrox aka Gregor Woschitz

translations

Level Up Translations
www.leveluptranslations.com
special thanks

Andrea Jelinek
Christa Sommerer
Daniela Wageneder-Stelzhammer
Daniel Hug
Erwin Poganitsch
Eva Schmuckermair
Helene Hochrieser
Hubert Preisinger
Jeremiah Diephuis
Jörg Schlipfinger

Katharina Kloiber
Kathrin Anzinger
Lisa Nebl
Margarete Jahrmann
Nikolaus Dürk
Peter Purgathofer
Roland Richter
Ruth Browne
Simon Schmuckermair
Volkmar Klien

promoters

foreverloops is promoted by aws impulse XL of BMWFW processed by aws
This is a license agreement ("EULA") between the end user and the foreverloops GmbH (hereinafter abbreviated as foreverloops). This Agreement establishes the end-user's right to use this application. By installing the software, the end user agrees to this agreement.

1. Definitions
1.1 "Software" means the computer program licensed under this Agreement, including all updates and upgrades, except for other content
1.2 "Content" means any audio, video or photo files included in the application, other sounds and templates containing appropriate files
1.3 "Application" means Software and other content
1.4 "Upgrades" means Supplementary versions of a software
1.5 "License Seat" means the license assigned to a particular terminal of the end user
1.6 "Terminal" means any physical or virtual device capable of processing data using a programmable calculation rule (such as PC, laptop, mobile device, etc.) in conjunction with a processor
1.7 "Commercial Use" means any commercial use or use for the purpose of making profit

2. Scope of use
2.1 foreverloops grants the end user the non-exclusive, non-sublicensable, non-transferable right to use the application on one (1) license seat for personal use as well as for commercial purposes, under the conditions specified in this Agreement.
2.2 The contents may be used for both personal and commercial purposes. However, a transfer to third parties for commercial purposes is not permitted.
2.3 Contents may not be extracted from the templates and used independently of the work results created by the software.
2.4 The use of upgrades requires the use of the basic product. An isolated transfer of an upgrade to third parties is, therefore, not permitted. The End User agrees that the Application may automatically download and install reasonable and/or necessary updates and upgrades. There is no obligation for foreverloops to support the previous version(s).
2.5 If the application contains third-party content, the (license) provisions of the corresponding providers shall be observed in addition to the General Terms and Conditions and the EULA of foreverloops.
2.6 Intellectual property rights and other intellectual property rights are recognized by the End User and remain with foreverloops.

3. Usage restrictions and protection of the software
3.1 The End User is prohibited from passing on, selling, lending, renting, or copying the Application to third parties.
3.2 The End User is prohibited from copying, editing, modifying, decrypting or copying the Software. Furthermore, the decompilation, the reverse translation of the object code into the source code or the reverse engineering is prohibited. No derivative or modified forms of the Software may be created.
3.3 The End User is prohibited from making the application or parts of the application available through a network that allows multiple users to simultaneously use it.
3.4 The End User is prohibited from removing, altering or disguising product identifications, copyright notices or other legal notices of intellectual property in the application.
4. **Support Services**
foreverloops may provide the End User with technical support and community management services in conjunction with the Application ("Support Services").
foreverloops reserves the right to change, suspend or terminate these Support Services at any time and for any reason.
You can contact foreverloops for support via support@foreverloops.com.

5. **Warranty and Liability**
5.1 To the extent permitted by law, the Application shall be made available to the End User as provided. foreverloops does not warrant that the Software is free of defects. Warranties of merchantability, satisfactory quality, fitness for a particular purpose, or compatibility with third-party Software are not provided.
5.2 foreverloops assumes no liability whatsoever for damages, in particular not for personal injury, property damage, consequential damage, indirect damage or loss of profit nor from warranty or product liability unless mandatory consumer protection provisions stipulate otherwise.
5.3 If foreverloops becomes liable for damages under the statutory provisions, this liability shall be limited to intent and gross negligence. The liability is limited to the amount of the actual contract. Any further liability is excluded unless consumer protection provisions stipulate otherwise.
5.4 foreverloops assumes no liability for the topicality, correctness, completeness and content of the information provided.

6. **Exclusion of the right of revocation**
The End User takes note and expressly acknowledges that the right of revocation is excluded.

7. **Termination**
7.1 The End User may terminate the agreement at any time by destroying the Application and all components.
7.2 foreverloops may terminate the Agreement at any time if the End User does not comply with the terms of use of this EULA. In this case, the End User may no longer use the application and must destroy it as well as all of its components.

8. **Written form requirement**
This agreement is final.
There are no oral collateral agreements.
Changes to this agreement must be agreed upon in writing.

9. **Severability clause**
Should any provision of this EULA be or become invalid, the validity of the remaining provisions shall remain unaffected.
The invalid provision shall be replaced by a valid provision which most closely reflects in the commercial sense the provision to be replaced.
In the event of a contradiction with the General Terms and Conditions of foreverloops, the provisions of the EULA shall apply.

10. **Jurisdiction and applicable law**
In the case of disputes, the court of jurisdiction for commercial customers is the relevant court at the registered office of foreverloops.
Austrian law is expressly applicable;
The application of UN purchasing law is expressly excluded unless mandatory consumer protection regulations do not provide otherwise.
11. **Extrajudicial settlement of disputes**
The following applies to End Users within the European Union:
In the case of a dispute concerning the interpretation, fulfillment or validity of the EULA, an amicable solution shall be sought before any legal action is taken.
Complaints may be submitted to contact@foreverloops.com.
If a complaint fails, the End User can file an online complaint within one year after the failure of the complaint on the online dispute resolution website of the European Commission:

or on the website of the European Consumer Center:

If extrajudicial redress procedures fail, proceedings may be brought before the competent court.