
GAMES AS A SERVICE
Lessons learned from 4+ years of Awesomenauts on Steam

Ronimo Games
Robin Meijer & Joost van Dongen

Welcome!

• Robin Meijer, producer

• Joost van Dongen, lead-programmer and co-founder

• Ronimo Games, indie studio making games since 2007

Introduction

• Awesomenauts

• 3v3 Online action-platforming

• Launched in 2012

• Seven years of development so far

• Games as a service business model

Introduction

• Talk about the Games as a Service model

• Why we use this model

• Lessons we learned while supporting Awesomenauts since 2012

• Walk you through an update cycle, how we actually update our game

Games as a Service

After releasing a game you can…

MAKE A SEQUEL MAKE ANOTHER GAME GAME AS A SERVICE
Take lessons from your game / reception Take lessons from development Learn about your game from players

Make another, better / bigger one Make an unrelated game Grow existing project in relevant ways

Focus on what made your game do well Focus on what you can do well Focus on truly finishing what you started

Games as a Service
After releasing a game you can…

For Games as a Service, you need:

• Ability for players to remain engaged for long periods of time (endless
replayability)

• Some way to generate revenue from engaged players

• Some way to expand on existing content in meaningful way

MAKE A SEQUEL MAKE ANOTHER GAME GAME AS A SERVICE
Take lessons from your game / reception Take lessons from development Learn about your game from players

Make another, better / bigger one Make an unrelated game Grow existing project in relevant ways

Focus on what made your game do well Focus on what you can do well Focus on truly finishing what you started

Our vision on Games as a Service

• Putting player-count above immediate revenue.

• Keeping the game fresh by releasing updates, giving players a reason to come
back.

Why…

• Player-developer interaction

• Realizing our true vision

• Fairly easy on Steam, even as an indie

• Working on a live game is amazing

• Actually lots of fun

What does that mean?

• Around 69% of Steam revenue past Year 1

• Share of DLC vs. game sales in revenue increases

• Additional revenue outside Steam, enabled by ease
of doing this on Steam.

• Over 2 million copies across platforms

LESSONS LEARNED FROM
FOUR YEARS OF

AWESOMENAUTS

August 2012

• Launch Awesomenauts

• Future content essential
part of our product
description.

• Wanted to deliver on that
soon, to show commitment

August 2012

• Launch Awesomenauts

• Future content essential
part of our product
description.

• Wanted to deliver on that
soon, to show commitment

• Content was already done.

September 2012

• Released first cosmetic DLC

• Revenue from existing players

• Share of revenue grows over the
years

• Players talk about ‘supporting us’

• Need to experiment with content /
price to see what resonates with
players

Distribution of Revenue since August 2014

June 2013

• Getting better at communicating with
players

• Forum topic with hints about new
character

• Vague hints got community engaged

• Hardly any work

• Important lesson about communicating
with our most hardcore fans.

August 2013

• Releasing content when it’s done

• Updates not bringing players back

• Growing number of ‘dormant’ players

• External forces result in players (Steam Sales, bundles, content creators)

• Players didn’t have any idea of our long-term plans

• Kickstarter campaign to realize ‘next level’ Awesomenauts

August 2013

• Pitching Awesomenauts: Starstorm

• Massive success

• Players respond well to long-term vision
as

narrative resonated with what they
wanted

• Players wanted to help us make this
happen

• Post-launch crowdfunding is possible

August 2013

• Don’t make promises. They’ll haunt you.

• Talk as much as you can about your vision

• Be open about things you can talk about

March 2014

• Successful launch on Playstation 4

• Ports capitalize further on existing content

• Total revenue much smaller than Steam, still easily worth it

• Games As A Service difficult on console

April 2014

• Dev Days 2014:
Robin Walker, Communication and Community in Games as Service

• Bundling updates into one, address problem of ineffective updates

• Moving updates beyond patch notes

April 2014

• Named updates.

• Teasing content.

• Engaging community, getting them
involved weeks ahead of launch.

April 2014

• Updates resulted in player spikes

• Returning players

• Reaching players who didn’t play anymore

April 2014

• Reaching out to ‘dormant’ players

• Giving them a reason to come back

• Presenting narrative, not just patch notes

• Reaching out to them through Steam events,
announcements.

• Providing incentives for ‘following’ you.

December 2015

• Continued doing updates this way.

• Impact slowly decreasing.

• Facing same issue again.

• Bundling updates further, narratives.

December 2015

• Meta-update

• Sharing content more than 6 months
ahead

• Press picks up the story again

• Plenty to look forward to

• Players assured of future of the game

• New DLC drives revenue

December 2015

• Players return for launch of the new mega-
update

• Lots of new content to experience

• Refreshes game, after four years

December 2015

• Selling gameplay content as DLC generates
revenue

• Poor communication

• Player backlash

• Balancing free vs. paid content

2017

• Sticking with the narratives around updates, metapatches to communicate
vision.

• Big stuff coming for Awesomenauts

• Still delivering on some old promises

• Not announcing anything yet

A PATCH: FROM
CONCEPTION TO HOTFIX

Awesomenauts patching process

• Develop and iterate internally

• Several weeks: open betas

• Thursday: make build for QA

• Friday: QA company

• Monday-Wednesday: fixes and new build

• Wednesday: launch

• Friday: hotfix

• Few weeks later: balance patch

• Months later: console patch

Prerequisite: patching on Steam

• Steam makes patches super easy

• Patch can go live immediately

• Can do multiple patches per day

• Can revert to previous patch

• Can launch new DLC yourself (if prepared)

Choosing what to make

Sources:

• Our own ideas

• Community requests

• Issues in the live game

• Long term vision

• Things previously cancelled

Player feedback
• Separate emotion from fact

• Players get angry and always disagree

• Players dislike stagnation, want new things AND hate change

• Dev must grow a thick skin

Balance

• Games As A Service is awesome for balancing

• Can do lots of balance patches

• Players expect demand constant balance tweaks

• Need player feedback and metrics to do balance

• Perfect balance does not exist

Balance and the meta

• Must regularly change even if balance already ‘perfect’

• Over time players flock towards same tactics

• Boring: everyone does same thing

• Even if tactic hardly overpowered

• Players also discover new tactics over time

Our current balance method

• Designer reads forums

• Discusses in conference calls and Twitch streams

• Makes list of planned changes

• Lets players give feedback on list

• Implements changes

• Beta

• Change based on feedback

Internal development

• Prototyping!

• Brainstorming!

• Playtesting!

• Iterating!

• Not talking about this today!

• Muhaha!

Using Public Beta instead of QA

• Each patch needs testing

• Extensive QA every month too expensive for small dev

• Also need player feedback

• Solution: replace most QA with betas

Ways to distribute betas

• Outside Steam

• Pre-launch on main app

• Separate Steam app

• Switchable Steam branch

• Dual-loaded DLC

• Live beta for everyone

Betas: Separate Steam app

• Completely separate application

• Users can enable/disable download

• Doesn’t share economy/workshop/achievements

• Need to set up and maintain Steamworks twice

• Need help from Valve to set this up

Betas: Switchable Steam branch
• Standard Steam feature

• User selects beta

• Can be behind password

• Hackers can see beta even without password

• User needs to download patch with every switch

• Easiest way to do betas

Betas: Dual-loaded DLC
• Put beta in separate DLC depot

• User enables free DLC to download and keep updated

• Ask on startup which version to run

• No download needed when user switches

• Entire game on disk twice

• Best way if repeated switching discourages users

• Valve likes this because they don’t need to do anything by hand for us

Betas: Live beta for everyone

• For doing temporary betas on everyone

• Entire game on disk twice

• We check our own server to see which to run

• Quick switch

• Large playerbase

• Beta with everyone = bugs for everyone

Giving access to betas

• Open beta for everyone

• ‘Secret’ password

• As a Kickstarter reward

• Paid beta access

Getting players into betas

• Only first beta of new content has many players

• Matchmaking problematic with few beta players

• Stale feedback after first round

• Do marketing, play beta on Twitch

Community translations

• Fans willing to help translate

• Build a small network of translators

• Let them check each other’s work

• Can be super fast

• Reward: Golden Duck icon

• Use professionals when too complex / big

Internal version management

• Lots of content in various stages of development

• Release one thing without getting bugs from another

• Standard solution: branches

We dislike branches:

• Too many merge conflicts when we refactor

• New content ‘hidden’ internally

Internal version management

Our solution:

• Most development in trunk

• Branch off release build 1 week before patch

• Disable unfinished content in release branch

• Hotfixes based on this branch

Hiding unreleased content

• Players hack game to find hidden content

• Must remove content entirely or accept leaks

• Our solution: tool automatically removes assets from builds

Paid QA

• Paid QA with a specialized company

• We only do this for big releases

• Limited testing of new content to reduce price

• Send build to QA through Steam beta branch (behind password)

• QA always on Friday, decide on Monday before

Final fixes

• Monday to Wednesday

• Fix issues found in QA

• Limited testing internally (~4 people 2 hours)

Why release on Wednesday?

• Not weekend: want to be around on release

• Not Thursday/Friday: weekend work if hotfix needed

• Not Tuesday: Steam server maintenance

• Not Monday: day before Steam server maintenance

Releasing the patch

• We do everything ourselves

• Except store items pre-approved by Valve

• Release patch on Wednesday evening (European time)

• Valve Seattle awake in case of emergencies

Patching problems on Steam

• Often broken files

• Can take up to 24 hours before user receives update

• Can require restarting Steam

• Won’t download while game is open

• Period with different versions

Hotfix

• Every patch has issues

• Despite internal testing, QA and betas

• Solving this too expensive

• Our solution: hotfix on Friday

• Result: users dislike bugs, but appreciate fast hotfixes

Balance fix

• Gameplay content gets balance fix after
several weeks

Why?

• Beta not played enough to find all exploits

• Takes time to find best tactics

• Feedback first few days ‘incorrect’

Patching and beta on console

• Certification makes patches super slow

• Patch without new DLC: 1 week minimum, 2 weeks realistic

• Patch with new DLC: 2 weeks minimum, 4 weeks realistic

• No easy way to do betas

Games as a service on console

• Better than last generation, still really difficult

• Turnaround time too long

• Must plan much more

• Can’t fix quickly when needed

• Requires more QA

Our solution for console

• Release everything on Steam first

• Wait for balance to settle on Steam

• Create console patch afterwards

• Result: PS4/X1 always months behind

• Console players hate this

CONCLUSION

Conclusion

• Developing for a live game is super fun

• Games As A Service can provide continuous income

• Steam is awesome for Games As A Service

• Must plan first patches before launch

• Group content into big patches for marketing

• Uses betas extensively

• Learn when and how to communicate with the community

• Develop a thick skin

Want to talk?

• Joost van Dongen

joost@ronimo-games.com

Dev blog: www.joostvandongen.com

• Robin Meijer

robin@ronimo-games.com

http://www.joostvandongen.com/

