
© 2007 Valve Corporation. All Rights Reserved.

Physical Gameplay in Half-Life 2

presented by
Jay Stelly

© 2007 Valve Corporation. All Rights Reserved.

Physical Gameplay
in Half-Life 2

New technology that hadn’t been successfully
integrated into our genre
Technical solutions not very well understood
Obvious visual payoff
Opportunity was to integrate with gameplay
Both a game design problem and a technical
problem

© 2007 Valve Corporation. All Rights Reserved.

High-level strategy

Don’t build the simulator
Don’t add features to the simulator (until it
becomes necessary)
Differentiate the product by depth of gameplay
integration, not incremental simulator features or
quality
Engineer tools and solutions in the game design
space

© 2007 Valve Corporation. All Rights Reserved.

Half-Life 2 Timeline for
Physics

Inspired by physics demos
Generated a bunch of ideas
Licensed physics simulator
Took some time for game designers to
really internalize physics technology

Built a bunch of prototypes
Built a bunch of design tools & logic

© 2007 Valve Corporation. All Rights Reserved.

Half-Life 2 Timeline for
Physics (continued)

Gameplay mechanics experiments
Solved some technical problems
Cut & focus pass
Solved more technical problems
Incrementally delivered a stable system

Valuable features at each deliverable
Polished and shipped the game

© 2007 Valve Corporation. All Rights Reserved.

Physics prototypes (pre-
production)

Zombie basketball
Watermelon skeet shooting
Glue gun
Danger Ted playset
Toilet crossing

© 2007 Valve Corporation. All Rights Reserved.

Cut & Focus pass

How can we tell which gameplay idea is better?
How many gameplay ideas do we need?
How can we measure or change the difficulty of
this gameplay?
How are we going to turn these prototypes into
shippable gameplay?

Are there metrics or analyses that will lead to better
gameplay?
Is there a systematic way to move these ideas
forward?
What are the technical problems we’ll need to solve?

© 2007 Valve Corporation. All Rights Reserved.

Game design

Game design can be reduced to training and
testing:
A game design is a set of player experiences
that:

trains a player with specific skills and knowledge
allows or requires the player to demonstrate that skill
or knowledge
is presented with style.

© 2007 Valve Corporation. All Rights Reserved.

Game design is engineering
(at least a bunch of it is)

Define success
Identify constraints
Generate ideas
Analyze solutions
Build prototypes
Test results
Measure success
Re-examine constraints

© 2007 Valve Corporation. All Rights Reserved.

Engineering training and
testing

Measurable criteria
Models & Analysis

Cost / benefit
Tradeoffs
How to cut
How to compare
How to solve backwards for requirements
How to measure value

© 2007 Valve Corporation. All Rights Reserved.

© 2007 Valve Corporation. All Rights Reserved.

© 2007 Valve Corporation. All Rights Reserved.

Tools for training

By example
Clues then deduction
Cliché
Explicit test (assertion)
Sandbox / toy / experiment
Practice
Forced choices

© 2007 Valve Corporation. All Rights Reserved.

Obstacles to training

Combat
Peril
Basically anything that forces the player
to make decisions
Reactions – rely on past skills &
knowledge

© 2007 Valve Corporation. All Rights Reserved.

Improving training

Make it clear that it’s ok to experiment or
fail
Sell forced choices with style
Suggest experiments
Story is not an obstacle to training

© 2007 Valve Corporation. All Rights Reserved.

© 2007 Valve Corporation. All Rights Reserved.

© 2007 Valve Corporation. All Rights Reserved.

© 2007 Valve Corporation. All Rights Reserved.

© 2007 Valve Corporation. All Rights Reserved.

Player value as a metric for
skills and knowledge

Each piece of skill or knowledge must have
value or get cut from your game
There is a limit to the total number of things you
can train in a game
Having a skill or piece of knowledge interact
with another increases the value of both
Requiring a piece of skill or knowledge to pass a
test increases its value to the player
These relationships form an economy that can
be analyzed and optimized
At Valve we call this “design economy.”

© 2007 Valve Corporation. All Rights Reserved.

Constraints from Half-Life

Breakable objects – crowbar
Physics needs to interact with core
combat gameplay

Collisions that cause damage
Players and NPCs use physics as cover

Physics needs to extend core puzzle
gameplay

© 2007 Valve Corporation. All Rights Reserved.

Integrating physics with
Half-Life is difficult

Physics is reasonably intuitive, but doesn’t “just
work” for a bunch of reasons.
Most game designers don’t completely
understand the physics simulation technology,
implementing their designs makes
understanding the simulator really important.
Game logic may place impossible requirements
on a physics simulation – requiring code to be
written that straddles the boundary between
game design and physics technology.

© 2007 Valve Corporation. All Rights Reserved.

Design interface

Educating designers in physics
Decomposing machines into physics blocks
Unfamiliar units (e.g. torque, impulses)
Tuning parameters
Complex sets of variables imply calculations

I want this part of this machine to spin at this speed
I want this plank to be stable enough to support the
player, but only until he reaches this point

Deliver technology incrementally
Only a few features to learn at a time

Need a physics expert to support designers

© 2007 Valve Corporation. All Rights Reserved.

Latency & Continuity

Most physics engines interact with the game in
discrete steps of time
Changes to the state of the system are often
queued until the next update/step
Game rules are often discontinuities in state

I want to break this object on collision
You can only break objects at time steps
Collisions occur between time steps
Built support for this by resetting in the future

Run until the next collision is ideal, but not
practical

© 2007 Valve Corporation. All Rights Reserved.

Speculation

Reserving space (Inventory, creating objects)
Motion planning
Collision detection without physics (tools,
queries)

Built tools and query layer
Critical problem for our AI system
Built in-house speculative collision solver

© 2007 Valve Corporation. All Rights Reserved.

Overdetermined systems

simulation variables
design variables
design criteria

gravity gun movement vs. damage
zombie car trap

Superman problem

© 2007 Valve Corporation. All Rights Reserved.

Simulation failure

Objects stuck in each other
Not settling
Valid for physics invalid for game design
Simulator explodes
Game design constraints that can’t be
satisfied
Create objects in solid space

© 2007 Valve Corporation. All Rights Reserved.

Conclusions

Engineer your gameplay mechanics
Use analysis and design economy to
intentionally improve your game design
Many technical problems remain with integrating
physics. You can solve some of these with
design constraints, but plan to invest in
technology.
Plan for failure cases and be sure to ask, “is this
failing as a result of desirable gameplay?”

