
© 2007 Valve Corporation. All Rights Reserved.

Dragged Kicking and
Screaming:

Source Multicore

Tom Leonard, Valve
9 March 2007

© 2007 Valve Corporation. All Rights Reserved.

Multicore

Most significant development since
consumer 3D

© 2007 Valve Corporation. All Rights Reserved.

Multicore

Most significant development since
consumer 3D
Explicit parallelism

Hardware problem becoming software
problem will require new techniques

© 2007 Valve Corporation. All Rights Reserved.

Introduction

The decisions faced with multiple cores
How we are approaching multiple cores
Algorithms and paradigms

© 2007 Valve Corporation. All Rights Reserved.

Goals

Integrate multicore across Valve’s
business

Expose to game programmers, licensees and
MOD authors

© 2007 Valve Corporation. All Rights Reserved.

Goals

Integrate multicore across Valve’s
business
Scale to cores without recompile

© 2007 Valve Corporation. All Rights Reserved.

Goals

Integrate multicore across Valve’s
business
Scale to cores without recompile
Create value beyond framerate

Apply cores to new gameplay

© 2007 Valve Corporation. All Rights Reserved.

Challenges

Games want maximal CPU utilization
Games are inherently serial
Decades of experience in single threaded
optimization
Millions of lines of code written for single
threading

© 2007 Valve Corporation. All Rights Reserved.

Strategies

Threading model
Threading framework

© 2007 Valve Corporation. All Rights Reserved.

Threading Models

Fine grained threading
Coarse threading
Hybrid threading

© 2007 Valve Corporation. All Rights Reserved.

Diving In

Client
User input
Rendering
Graphics simulation

Server
AI
Physics
Game logic

© 2007 Valve Corporation. All Rights Reserved.

Diving In

Experiment: run client and server each
on own core

© 2007 Valve Corporation. All Rights Reserved.

Diving In

Experiment: run client and server each
on own core
Benefits: forced to confront systems that
are not thread safe or not thread efficient

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Problem: shared data access
Global data
Static data (optimizations/function local state)
Singleton objects

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Problem: shared data access
Thread safety is easy!

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Problem: shared data access
Thread safety is easy!

Slap on a mutex/critical section

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Problem: shared data access
Bad thread safety is easy!

Slap on a mutex/critical section
The simple thing is the worst thing

Mutexes are terrible
Excessive waits
Error prone
Fail to scale

Establish slow but stable baseline

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Efficient thread safety
No synchronization (“wait-free”)

Each thread has a private copy of all the data
needed to perform operation:

Threads working on independent problems
Replace globals with thread private data
Reorient to pipeline

Example: Source “Spatial Partition”

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Server Objects Client Objects

Static Objects

Spatial Partition

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Server Objects Client Objects

Static Objects

Spatial Partition

Static Objects

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

Efficient thread safety
No synchronization (“wait-free”)
Better synchronization tools, techniques

Analyze data access
Example: symbol table using read/write lock

Decouple using queued function calls

© 2007 Valve Corporation. All Rights Reserved.

Discoveries

What if you can’t eliminate contention
over shared resources?

© 2007 Valve Corporation. All Rights Reserved.

Results

Can approach 2x in contrived maps

© 2007 Valve Corporation. All Rights Reserved.

Results

© 2007 Valve Corporation. All Rights Reserved.

Results

© 2007 Valve Corporation. All Rights Reserved.

Results

Can approach 2x in contrived maps
More like 1.2x in real single player
Applicable to 360 Team Fortress 2

© 2007 Valve Corporation. All Rights Reserved.

Hybrid threading

Use the appropriate tool for the job
Some systems on cores (e.g. sound)
Some systems split internally in a coarse manner
Split expensive iterations across cores fine grained
Queue some work to run when a core goes idle

Need strong tools
Maximal core utilization

© 2007 Valve Corporation. All Rights Reserved.

Hybrid threading: Rendering

Render

Skybox Main View Monitor Etc.

Scene List

For each object

Particles

Character

Sim & Draw

Bone Setup

Etc

Draw

© 2007 Valve Corporation. All Rights Reserved.

Hybrid threading: Rendering

Problems
Per-view scene construction limits
opportunity
Arbitrary object type order
Arbitrary code execution

Simulation and Rendering interleaved
Lazy calculation optimizations

© 2007 Valve Corporation. All Rights Reserved.

Hybrid threading: Rendering

Iterative Transition: Skeletal Animation
Parallelize lazy calculation triggers
Refactor bone setup into single pass per view
Refactor into single pass for all views
Same pattern for other CPU-intensive stages

© 2007 Valve Corporation. All Rights Reserved.

Hybrid threading: Rendering

Revised pipeline
Construct scene rendering lists for multiple scenes in
parallel (e.g., the world and its reflection in water)
Overlap graphics simulation
Compute character bone transformations for all
characters in all scenes in parallel
Allow multiple threads to draw in parallel
Serialize drawing operations on another core

© 2007 Valve Corporation. All Rights Reserved.

Threading Tools

Implementing Hybrid Threading

Programmers solve game development
problems, not threading problems
Empower all programmers to leverage cores

Operating system: too low level
Compiler extensions (OpenMP): too opaque
Tailored tools: correct abstraction

© 2007 Valve Corporation. All Rights Reserved.

Tailored tools: Game
Threading Infrastructure

Custom work management system
Intuitive for programmers
Focus on keeping cores busy
Thread pool: N-1 threads for N cores
Support hybrid threading

Function threading
Array parallelism
Queued and immediate execution

© 2007 Valve Corporation. All Rights Reserved.

Tailored tools: Game
Threading Infrastructure

Goal: make system easy to use, hard to
mess up
Example: compiler generated functors

Uses templates to package up functions and
data, point of call looks very similar
Call arrives on other end as if called normally
Saves time, reduces error, encourages
experimentation

© 2007 Valve Corporation. All Rights Reserved.

Tailored tools: Game
Threading Infrastructure

One-off push to another core

if (!IsEngineThreaded())

_Host_RunFrame_Server(numticks);

else

ThreadExecute(_Host_RunFrame_Server, numticks);

© 2007 Valve Corporation. All Rights Reserved.

Tailored tools: Game
Threading Infrastructure

Parallel loop

void ProcessPSystem(CParticleEffect *pEffect);

ParallelProcess(particlesToSimulate.Base(),

particlesToSimulate.Count(),

ProcessPSystem);

© 2007 Valve Corporation. All Rights Reserved.

Tailored tools: Game
Threading Infrastructure

Queue up a bunch of work items, wait for
them to complete

BeginExecuteParallel();

ExecuteParallel(g_pParticleSystem,

&CParticleSystem::Update, time);

ExecuteParallel(&UpdateRopes, time);

EndExecuteParallel();

Low level APIs for the brave

© 2007 Valve Corporation. All Rights Reserved.

Contention

What if you can’t eliminate contention over
shared resources?
Example: Allocator

Heavily used
Multiple pools of fixed sized blocks with a
custom spin lock mutex per-pool
Mutex limiting scale
Didn’t want per-thread allocators

© 2007 Valve Corporation. All Rights Reserved.

Contention

Lock-free algorithms
No thread can block system regardless of
scheduling or state
Under the hood of all services and data
structures
Relies on atomic write instructions,
“compare-and-swap”

© 2007 Valve Corporation. All Rights Reserved.

Contention

bool CompareAndSwap(int *pDest, int newValue, int oldValue)

{

Lock(pDest);

bool success = false;

if (*pDest == oldValue)

{

*pDest = newValue;

success = true;

}

Unlock(pDest);

return success;

}

© 2007 Valve Corporation. All Rights Reserved.

Contention

bool CompareAndSwap(int *pDest, int newValue, int oldValue)

{

__asm

{

mov eax,oldValue

mov ecx,pDest

mov edx,newValue

lock cmpxchg [ecx],edx
mov eax,0

setz al

}

}

© 2007 Valve Corporation. All Rights Reserved.

Contention

Use lock-free algorithm in allocator
Replace mutex and traditional free list per-
pool with a lock-free list per-pool
Windows API/XDK SList

© 2007 Valve Corporation. All Rights Reserved.

Lock-free example: singly
linked list

Compare-and-swap
“If head is equal to what I think it is, assign
with my new head”
ABA Problem: is it the same head?
Use a serial number as a discriminating field

© 2007 Valve Corporation. All Rights Reserved.

Lock-free example: singly
linked list

class CSList

{

public:

CSList()

void Push(SListNode_t *pNode);

SListNode_t *Pop();

SListNode_t *Detach();

int Count() const;

private:

SListHead_t m_Head;

};

© 2007 Valve Corporation. All Rights Reserved.

Lock-free example: singly
linked list

struct SListNode_t

{

SListNode_t *pNext;

};

union SListHead_t

{

struct Value_t

{

SListNode_t *pNext;

int16 iDepth;

int16 iSequence;

} value;

int64 value64;

};

© 2007 Valve Corporation. All Rights Reserved.

Lock-free example: singly
linked list

Void Push(SListNode_t *pNode)

{

SListHead_t oldHead, newHead;

for (;;)

{

oldHead.value64 = m_Head.value64;

newHead.value.iDepth = oldHead.value.iDepth + 1;

newHead.value.iSequence = oldHead.value.iSequence + 1;

newHead.value.Next = pNode;

pNode->pNext = oldHead.value.pNext;

if (ThreadInterlockedAssignIf64(&m_Head.value64,

newHead.value64, oldHead.value64))

{

return;

}

}

}

© 2007 Valve Corporation. All Rights Reserved.

Lock-free example: singly
linked list

Lock-free list exceptionally useful
Keep pools of context structures when
impractical to give every thread a context
Efficiently gather results of a parallel process
for later handling
Build up lists of data to operate on using
Push(), then use Detach() (a.k.a “Flush”) to
grab the data in another thread in a single
operation

© 2007 Valve Corporation. All Rights Reserved.

Example
extern Vector trace_start;

extern Vector trace_end;

// etc...

struct cbrush_t

{

int contents;

unsigned short numsides;

unsigned short firstbrushside;

int checkcount; // to avoid repeated testings

};

///////////////////////////////

void BeginTrace()

{

g_CModelMutex.Lock();

++s_nCheckCount;

}

© 2007 Valve Corporation. All Rights Reserved.

Example
struct TraceInfo_t

{

Vector m_start;

Vector m_end;

// etc...

CVisitBitVec m_BrushVisits;

};

CTraceInfoPool g_TraceInfoPool;

TraceInfo_t *BeginTrace()

{

TraceInfo_t *pTraceInfo;

if (!g_TraceInfoPool.PopItem(&pTraceInfo))

pTraceInfo = new TraceInfo_t;

return pTraceInfo;

}

© 2007 Valve Corporation. All Rights Reserved.

Lock-free algorithms

Thread pool work distribution queue
Derived from HL2 asynchronous I/O queue
Designed for one provider, one consumer
Simple prioritized queue with mutex
Arbitrary priority
One queue for all threads

© 2007 Valve Corporation. All Rights Reserved.

Lock-free algorithms

Solutions
Use lock-free queue (Fober, et. al.)
Rework interface to fixed priorities, one
queue per-priority

Interfaces critical

Queues per core in addition to a shared
queue
Use atomic operations to get “ticket”, actual
work done may differ

© 2007 Valve Corporation. All Rights Reserved.

Lock-free algorithms

Locks permit a stable reality
Lock-free permits reality to change
instruction to instruction
Leverage inference rather than locks to
know part of the system is stable

Wait-free is always better

© 2007 Valve Corporation. All Rights Reserved.

Looking Forward

Why so much up-front investment?

© 2007 Valve Corporation. All Rights Reserved.

Looking Forward

Why so much up-front investment?
Steam

Communicate with customers
Tap markets not available via retail

Dramatic change is underway
Core count double every 18 months
CPU/GPU/PPU/AIPU/etc not the future
Many homogeneous cores
Division of computing power a software problem

© 2007 Valve Corporation. All Rights Reserved.

Call to action

Build or acquire strong tools, new techniques

Embrace lock-free mechanisms to move work and data to and
from wait-free code

Prepare for decomposition of features over many cores

Use accessible solutions to empower all programmers, not just
systems programmers

Support even higher level threading framed in terms of game
problems

© 2007 Valve Corporation. All Rights Reserved.

Summary

Started with a stable but bad threading
Iteratively eliminated bad cases using
variety of techniques, usually lock-free
During iterations, expanded toolset to
meet newly discovered needs
Focused on ease-of-use for other
programmers
Now being applied by others at higher
levels

© 2007 Valve Corporation. All Rights Reserved.

In Source SDK this summer

Contact: tom_gdc@valvesoftware.com

