

GUIDE TO MAKING BLACK MESA MODS
AND MAPS

Setting up the Black Mesa Tools

The Black Mesa tools should require no special setup, and work out of the box. You
can find them located in Steamapps/common/Black Mesa/bin. Here you will find all
of the usual Source tools like Hammer, Modelviewer (hlmv.exe), and everything else
you would expect from the usual Source pipeline.

SETTING UP HAMMER

Everything within Hammer should work out of the box, all you will need to do to get
creating maps for Black Mesa is to point Hammer to use the correct FGDs (entity
definition files).

In Hammer, go to tools > options. Under the section which reads “Game Data files”,
click the “add” button to add our FGD files. The 3 FGD files you should tell Hammer
to use are:

Once you have set up the FGDs, Hammer is set up. Everything should work
perfectly!

VPROJECT

This will not happen to most users. However, if you have worked on other Source
games, you may get an error related to VPROJECT in Hammer. If this happens, you

Black Mesa/bin/base.fgd

Black Mesa/bin/bms.fgd

Black Mesa/bin/halflife2.fgd

 Setting up the Black Mesa Tools

o Setting up Hammer

o VProject

 Publishing Mods on the Black Mesa Workshop

o Setting up your folder structure

o Generating a VPK

o Publishing to the workshop

 Black Mesa Specific Mapping Entities

o Loading Screens

o Info_Observer_Menu

o Generate Images

o Hard Respawns

need to set the environment variable to point to Black Mesa. Hammer may not work
properly.

Right click on “My Computer,” then go to “Properties”. Then “Advanced system
settings”.

On the dialog which appears, go to the “advanced” tab, and then click the
“Environment Variables” button.

Under “user variables for your name”, find VProject in the list. Click it, then press
“Edit,” and point it to your Black Mesa “bms” folder, which for most installs, will be
“C:\Program Files (x86)\Steam\SteamApps\common\Black Mesa\bms”.

If VProject is not in the list, click “New” and add it. Give it the “Variable name”
VProject, and a “Variable value” of the “bms” folder.

That’s it, done!

Publishing Mods on the Black Mesa Workshop

This guide will explain how to publish a mod/map on the Black Mesa workshop.

To begin with, you need to have created a mod/map and have it in a state where you
are happy to publish it. Fully featured mods and maps both follow the same
conventions for publishing. You can check out this guide to find out how to use our
SDK tools to make your own mod.

SETTING UP YOUR FOLDER STRUCTURE

The first step is to create a folder you will store your mod(s) in: bms-mods, or
something to that effect (don't use spaces in path names, Source hates that). This
folder can be anywhere. This will serve as the master folder which you store your

various mods/maps in, to make life easier.

Let's say the mod you are making is called gaben_world. In your bms-mods folder,
make a folder called gaben_world. Imagine your mod contains some materials, some
models, and a few maps/nodegraphs. The inside of the folder gaben_world should
be made to mirror the structure of the BMS folder. So in this instance, you would
create a materials, models, and maps folder inside the gaben_world folder, and then
nest your appropriate content in those folders, how they would work if you wanted to
install them.

Example file structure for mod gaben_world:

GENERATING A VPK

Ensure all of your mod content is appropriately stored here, as it would be for the
BMS folder. Now your mod folder is finished (in this example gaben_world), you
need to turn the folder into a VPK. What is a VPK? You can think of a VPK as a zip
file, or a form of compressed archive. All of your mod content will be contained within
a single VPK, which mimics the folder structure of the BMS folder. Black Mesa reads
these VPK files, and loads them as addons when the game boots up. This not only
compresses the mod to reduce file size, but makes it quicker to load and
install/uninstall too, as well as allowing you to mix and match mods!

Making a VPK is extremely simple. Simply take your gaben_world folder, select it,
and drag and drop it onto VPK.exe. VPK.exe is found in the Black Mesa/bin folder,
alongside all of Black Mesa's other modding tools. If you want to make things simpler
for yourself, you can copy/paste VPK.exe into your bms-mods folder, and then use it
from there. You can also write a batch file to run vpk for a specific folder. The batch
file to make a VPK for gaben_world would look like this, in our example:

vpk "C:\bms-mods\gaben_world"

You need to run the batch file or drag/drop the folder onto VPK.exe every time you
make a change/update to the map.

Assuming everything goes properly, you should now have a VPK in the same folder
as VPK.exe, with the same name as the original folder. There are some caveats.
The workshop only allows VPK of up to 100mb to be uploaded, and a mod upload
can only contain a single VPK. This is just an unfortunate limitation of the workshop
system. If your VPK is bigger than this file size limit, you will need to split it up into
multiple parts, and upload them separately, as different mods. Make sure when you

c:/bms-mods

>>

c:/bms-mods/gaben_world

>>

c:/bms-mods/gaben_world/materials/gaben_wall.vtf

c:/bms-mods/gaben_world/materials/gaben_wall.vmt

c:/bms-mods/gaben_world/models/gaben.mdl

c:/bms-mods/gaben_world/maps/dm_gaben.bsp

c:/bms-mods/gaben_world/maps/nodegraphs/dm_gaben.ain

upload mods which require multiple parts, that it is made clear that there are multiple
compulsory parts!

If your mod is big enough to need to be split into multiple parts, you need to run a
batch file to generate a multi-part VPK. Here is an example batch file for
gaben_world:

vpk -M -c 75 "C:\bms-mods\gaben_world"

The -M switch tells VPK.exe to generate a multi-part VPK. The -c switch and the 75
tells it to try and keep the parts in a size smaller than 75MB.

PUBLISHING TO THE WORKSHOP

Now you have your VPK(s), you are ready to publish it/them to the workshop! This is
done using the P2MapPublish.exe tool, also found in the bin folder, where you found
VPK.exe. Again, for ease of use/simplicity, you can copy/paste this executable to the
bms-mods folder if you find that nicer to work with.

The P2Publish tool is fairly straightforward. Run the tool, to access its main interface.

On the main interface, click "Add" to create a new mod. When using the
P2MapPublish tool, make sure your Steam program is logged on and signed into the
correct account you want, as this is the account it will publish the content under.
Once you've told the P2Publish tool to create a new mod, enter in an appropriate title
for the mod - if it is a map, Black Mesa typically uses the naming convention
xx_mapname, with xx being the gametype prefix - bm for singleplayer, dm for
multiplayer. But you can name it what you like, if so you desire. If it is a multi-part
VPK, the mod name should specifiy this (example: Gaben World [Part 1/3]) You
must add a preview image, this is the image people will see on the workshop that
represents your mod. Choose it wisely! You must then fill in a small description, and
accept the terms of use.

Once you are ready, click publish, and your VPK will be uploaded onto the Black

Mesa workshop. Congratulations, you have just published your first Black Mesa
mod! You can then visit the workshop item on your profile to add more preview
images, edit links, add/remove contributors, and plenty of other good stuff. That's not
quite the end, though. Always test that your mod works by subscribing to it and
making sure it functions in game, or asking a friend to do so for you!

Black Mesa Specific Mapping Entities

LOADING SCREENS

By default, Black Mesa has a nice little loading screen system, where during loading,
the game UI displays a randomly selected screenshot of the map, and once loading
is complete, the screen will seamlessly fade into the actual map, at the same
location, creating a very nice transitional effect. The loading screen also displays
some set information, like number of recommended players, a description of the
map, etc. This system is extensible and flexible, allowing mappers and modders to
generate their own loading screens and bundle them with their maps.

The system for producing these loading screens is relatively simple and elegant.

INFO_OBSERVER_MENU

The first step happens while mapping in Hammer. You must place an
info_observer_menu in the map, and assign it an ID. The info_observer_menu is
where the screenshot for the loading screen will be taken from, and where the UI will
fade out to, leaving that as the starting camera position. The Black Mesa standard
per map is to have 3 info_observer_menus, though you can have more or less if you
desire. Assign them a unique ID in their properties. If you're using 3 cameras, the IDs
should be 0, 1 and 2. These cameras should be places somewhere nice that has a
good view of important parts of the map - stuff you'd want to show off in the loading
screen and once the map loads up. This may require tweaking and playing around
with.

That's the early prep finished! Pretty simple! Compile the map with these entities
present.

GENERATE IMAGES

The next step is to generate the images from the cameras, which is a simple
process. Load up the map at the desired resolution (make sure you've built
cubemaps first). Open the console, and use the command
bm_generate_menu_images. Your perspective will then jump between the cameras,
and generate the 3 menu images. These are generated into the folder
materials/vgui/multiplayer/map_backgrounds/xx_mapname.vtf/vmt. You will need to
do this process 3 times, for Black Mesa's different supported aspect ratios - 4:3,
16:9, and 16:10. You will have to change resolution to do it. The recommended
resolutions for the screens are - 1280 x 1024 (4:3), 1920 x 1080 (16:9) and 1650 x
1050 (16:10 - or 1920x1200 if your monitor supports it).

The end result is in materials/vgui/multiplayer/xx_mapname.vtf/vmt, you should have

9 vtfs. 3 for each aspect ratio. 3 will be standard, 3 will have the suffix _widescreen,
and another 3 with the suffix _widescreen_16_10. Check the vtfs to make sure the
screens generated properly, sometimes they will get messed up because of an error
generating and the process may need to be repeated. Now you have your images,
you just have to hook them up to be used and understood by the engine. This
process is simple - it's done via a text file located in the maps folder. Here is how the
file looks for the map dm_gasworks:

Let's break this file down a bit.

The top line is the map's filename. This is needed so the engine knows what map to

associate the information with. The text file itself should also have the same name as

the map's filename. The "name" field is the "proper" name of the map, which will be

displayed on the loading screen. The "players" field displays underneath the map's

name, and is the recommended playercount for the map, for a good experience - not

the min/max number of supported players. This is just an estimate from the mapper.

For example, Gasworks can theoretically support up to 32 players (it has 24

spawns), but would not play well above 16 players, in the mapper's opinion.

The next 2 fields, for "images" and "descriptions" are randomly selected by the

game. You can have as many as you want and the game will randomly pick one. So

let's say the game picks image "1", it will also pick description "1" to go with it. This

functionality is not used by default in Black Mesa, but modders/mappers could take

advantage of this to tailor descriptions for each unique image. The Black Mesa

standard is to use 3 images for each map (and 1 description), but the game can

"dm_gasworks"

{

// The 'non mapper' name of the level.

"name" "GASWORKS"

// The number of recommended players.

"players" "6 - 16 PLAYERS"

// Image materials to draw. Randomly chosen.

// Path relative to materials. Must point to a

// VMT.

"Images"

{

"0" "multiplayer/map_backgrounds/dm_gasworks_0"

"1" "multiplayer/map_backgrounds/dm_gasworks_1"

"2" "multiplayer/map_backgrounds/dm_gasworks_2"

}

// Map specific descriptions. Also randomly chosen.

"Descriptions"

{

"0" "This Gasworks complex was built to power early teleportation tests.

Some clues about its experimental history lurk beneath the surface..."

"1" "This Gasworks complex was built to power early teleportation tests.

Some clues about its experimental history lurk beneath the surface..."

"2" "This Gasworks complex was built to power early teleportation tests.

Some clues about its experimental history lurk beneath the surface..."

}

}

theoretically support as many as you want. We recommend 3, to stop filesize bloat

from having too many images, while keeping variety by having a few images. Notice

how each image/description has an ID number before it. This is how the game

knows which info_observer_menu ID to fade the image to. The "0" "1" and "2" fields

correspond to the number of the info_observer_menu entity you placed in the map

earlier. So in this example, when the menu decides randomly to display the image

"dm_gasworks_2", it knows to fade to the camera ID "2" when it has finished loading.

Voila! You have created a nice flashy loading screen effect.

HARD RESPAWNS

All items on the map can be set to have a specific respawn timer, which by default is

15. Using the default behaviour, this means the item will respawn 15 seconds after it

is picked up.

Simple.

But competitive players/level designers may want to cater to a different style of play.

So we created the "hard respawn" setting, which can be set on any item in the editor.

Let's say an item is set to hard respawn, with a respawn time of 60 seconds. That

means that the item will respawn every 60 seconds, regardless of when it is picked

up. This allows you to create maps where the weapons spawn at predictable times,

which may be more desirable for the competitive types. For instance, you could have

a Gluon in the center of the map with a hard respawn time of 2 minutes. In a 10

minute match, this means the Gluon will spawn on the 10:00, 8:00, 6:00, 4:00, and

2:00 minute marks, allowing the level designer to have better control of the game

flow, and allowing competitive players to run different setups and plan accordingly.

